|
| 1: |
|
primes |
→ sieve(from(s(s(0)))) |
| 2: |
|
from(X) |
→ cons(X,n__from(s(X))) |
| 3: |
|
head(cons(X,Y)) |
→ X |
| 4: |
|
tail(cons(X,Y)) |
→ activate(Y) |
| 5: |
|
if(true,X,Y) |
→ activate(X) |
| 6: |
|
if(false,X,Y) |
→ activate(Y) |
| 7: |
|
filter(s(s(X)),cons(Y,Z)) |
→ if(divides(s(s(X)),Y),n__filter(s(s(X)),activate(Z)),n__cons(Y,n__filter(X,sieve(Y)))) |
| 8: |
|
sieve(cons(X,Y)) |
→ cons(X,n__filter(X,sieve(activate(Y)))) |
| 9: |
|
from(X) |
→ n__from(X) |
| 10: |
|
filter(X1,X2) |
→ n__filter(X1,X2) |
| 11: |
|
cons(X1,X2) |
→ n__cons(X1,X2) |
| 12: |
|
activate(n__from(X)) |
→ from(X) |
| 13: |
|
activate(n__filter(X1,X2)) |
→ filter(X1,X2) |
| 14: |
|
activate(n__cons(X1,X2)) |
→ cons(X1,X2) |
| 15: |
|
activate(X) |
→ X |
|
There are 15 dependency pairs:
|
| 16: |
|
PRIMES |
→ SIEVE(from(s(s(0)))) |
| 17: |
|
PRIMES |
→ FROM(s(s(0))) |
| 18: |
|
FROM(X) |
→ CONS(X,n__from(s(X))) |
| 19: |
|
TAIL(cons(X,Y)) |
→ ACTIVATE(Y) |
| 20: |
|
IF(true,X,Y) |
→ ACTIVATE(X) |
| 21: |
|
IF(false,X,Y) |
→ ACTIVATE(Y) |
| 22: |
|
FILTER(s(s(X)),cons(Y,Z)) |
→ IF(divides(s(s(X)),Y),n__filter(s(s(X)),activate(Z)),n__cons(Y,n__filter(X,sieve(Y)))) |
| 23: |
|
FILTER(s(s(X)),cons(Y,Z)) |
→ ACTIVATE(Z) |
| 24: |
|
FILTER(s(s(X)),cons(Y,Z)) |
→ SIEVE(Y) |
| 25: |
|
SIEVE(cons(X,Y)) |
→ CONS(X,n__filter(X,sieve(activate(Y)))) |
| 26: |
|
SIEVE(cons(X,Y)) |
→ SIEVE(activate(Y)) |
| 27: |
|
SIEVE(cons(X,Y)) |
→ ACTIVATE(Y) |
| 28: |
|
ACTIVATE(n__from(X)) |
→ FROM(X) |
| 29: |
|
ACTIVATE(n__filter(X1,X2)) |
→ FILTER(X1,X2) |
| 30: |
|
ACTIVATE(n__cons(X1,X2)) |
→ CONS(X1,X2) |
|
The approximated dependency graph contains one SCC:
{23,24,26,27,29}.